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Abstsaet We show how to wmuuu a multimode operamr which satisfies tk quantum- 
Heisenberg-Weyl algebra (H-W, algebra): we use this operator to create new two-mode 
realizations of the SU,(2) and SU,(l.l) quantum algebas. We also investieate the 
comsponding wherent states. 

1. Introduction 

Conventional annihilation (resp. creation) operators for boson modes indexed by i, j ,  . . . 
satisfy 

[a;, ai'] = s;j [a;, U j ]  = 0 [n;. U j ]  = -s;juj (1) 

where we have introduced the number operators n, = uitu;. In a previous paper [ I ]  the 
authors investigated two-mode states arising from the operator [Z] 

A = ula~(max(nI ,nz)) -1 /2 (2) 

[ A ,  A t ]  = 1 [N, AI = - A  (3) 

which may easily be Seen to satisfy the single-mode boson commutation relations 

where we define N = A t A  = min(n1, n2). This may be generalized to three or more modes. 
There has been much recent interest in deformations of the conventional boson 

commutation relations, equation (1). The first such deformation [3] considered was 

.ut -qat,  = 1. (4) 

The coherent states appropriate to this formulation are related to the classical q-functions 
of mathematics (see, e.g., the books by Exton 141 or Andrews [ S I ) ;  we therefore refer to 
these deformed bosons as M(aths)-bosons. A later version [6, 71 is 

aut - qat, = 9- [n. a'] =: U +  (5) 

where n is the appropriate number operator. This deformation was a means of obtaining 
realizations of quantum algebras such as SUq(2) which arose from physics considerations; 
we therefore refer to this deformation as a P(hysics)-boson. 

We note that both formulations satisfy 

[U,  ut1 e .U' - .'U = [n + IIq  - [nl, (6) 
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where for M-bosons, 

A I Solomon and J Kutriel 

[nlqM = (q" - O/(q - 1) 

[fl1qP = (4" - q-")/(q - 4-9. 

[a, (at)'] = (a+P-')(tn + rlq - [nl,) 

and for P-bosons, 

In general we have 

(7) 
and we dmp the index M or P as equation (7) holds in either case. We shall usually omit 
the subscript q on [n], when the context makes clear that a value of q is assumed. This 
result generalizes [SI to 

[a, F(~+) I Io )  = qDatF(at)lo) (8) 

where 

is the q-derivative of classical q-analysis [9], and 

is the P(hysics) version. We shall find this relation useful in defining the multimode 
q-coherent states. We staTt with the two-mode case. 

2. Multi-mode q-bosons 

Consider q-boson modes ai satisfying either of the commutation relations, equation (4) or 
equation (5 )  above, with the appropriate number operators n,.  We shall additionally assume 
that [n i ,  ai1 = -dijaj. Since ni is a function of ai and nit. this ensures that [n i ,  njl = 0. 

Now define a two-mcde boson operator A by 

A = a ~ s I m a x ( [ n ~ l ,  tn&l-l'z (9) 
(for both M- and P-bosons). One may verify that with this definition, 

AA' - qA'A = 1 [M - CW] 

AAi - qAtA = q-N [P - w e ]  (10) 

where the number operator in both cases is given by N min{nl,nz) and satisfies 

Equation (IO) tells us that we have a two-mode realization of both cases of the deformed 
Heisenberg-Weyl algebra. This in turn enables us to obtain new two-mode realizations of 
the quantum algebras SUq(2) and SUq(l, 1) using a q-analogue of the Holstein-Primakoff 
realization as in [ 101. 

[N. A ]  =-A.  

SUq(2): The Holstein-Primakoff realization of SU,(2) is given by 

J+ = Jt2a + 1 - NIAt 
J- = A& + 1 -NI 
Jo = N - U  
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where U is the angular momentum quantum number U = h, 1, $, . . .. The standard SUJ2) 
commutation relations ensue: 

[ J + ,  J-I = IZJOI 
[Jo .  Ji] = H i .  

SU,( I ,  I): In this case the corresponding realization is: 

K + = J [ 2 o - l + N ] A t  

K- = A&u - 1 + NI 
K o = N + a  

where U is real and positive. These operators satisfy the commutation relations of SU,(l, 1) 

(14) 
[K+, K-I = -t2Kol 
[KO, K*] = fK+. 

Since [nl - nz, A] = 0 the two-mode Fock space spanned by the common eigenstates 
of nl and nz .  (li, j) ; i ,  j = 0, 1, 2, . . . I ,  splits into a direct sum of subspaces 

{li + C, i )  i = O ,  1, ...} f o r C z 0  
F c = (  [ l i , i + l C l )  i=O, l , . . . )  f orC<O 

each one of which is invariant under the two-mode boson operators introduced above. In 
this paper we restrict our attention to the subspace FO consisting of diagonal states. 

The realization for SUq(2) given in equation (11) is different from the two-mode 
realization given in [6, 71. The realization for SU,(l, 1) generalizes that given in [ I l l  
to which it reduces within the diagonal subspace for U = 4. 

The above considerations may be readily generalized to the multi-mode case. Define 
the thnx-mode 9-boson by 

This three-mode 9-boson, together with its Hermitian conjugate At, satisfies the appropriate 
M or P versions of the deformed Heisenberg-Weyl algebra. This enables three-mode 
realizations of quantum algebras to be given. If. further, the single-mode operators ai, 9. . . . 
are replaced by the corresponding multi-boson operators as previously given by the authors 
[IO], one may obtain multi-mode, multi-boson realizations of quantum algebras. 

3. 'ho-mode q-coherent states 

We define our two-mode coherent states in the usual way by 

A l a )  =ala) (16) 

From the algebraic discussion of the inwduction, we see that a (normalized) solution 
where A is the two-mode q-boson operator defined in equation (9) above. 

of equation (16) is given by 

la) =N-'E,(~A+)Io,o) (17) 
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where the q-exponential function E,&) satisfies 
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q D x E q ( a x )  =aEp(ax)  

(in both M and P cases). The q-exponential is defined in both cases by 

The symbol [TI*! is defined by [TI,! = [r]& - IlP[r - 21,. . . [ 11,. The normalization 
constant N is given by fl = E,(JaJ2). Choosing a normalized basis 

we see that the coherent states are given by 

It was shown in the conventional case [ I ]  that two-mode coherent states exhibit 
squeezing; that is, one of the components of the associated electromagnetic field can have 
dispersion less than the vacuum value of 1/2 ( in appropriate units). One may demonstrate 
that such squeezing effects also occur here. We define the electromagnetic field components 
in the usual way by XI z (a1 + alt ) /Z and p~ 5 (a, - a,t)/i& ; with the corresponding 
expressions for the second mode. General two-mcde components are defined by 

and 

The dispersion of X, for example, is given by 

(AX)’ E ( X ’ )  - (X)’. 
In the coherent state la) we have ( X )  = 0 = (P ). Thus, for diagonal states we have 

( A X ) ~ = ( X ’ )  = ( A ’ + P ’ ) ( [ ~ I I + [ ~ ~  + ~ I ) + ~ { ( ~ I ~ z + u z u ~  )+cc1 (21) 

and we have not yet made any assumption about the commutator [ut, all: Straightforward 
calculations give ([nl]) = Ial’, while (In1 + 11) = qlalz+ Q where 

Writing 
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and assuming alaz = e"a2al we have for the dispersions 

We choose Az + p z  = 1 to maintain the relation between X, P and the corresponding 
number operator, maximal squeezing occurs for S = 0 and, just as in the conventional case. 
(q = I), for A = CL = 1/Jz.  

1.1 1.2 1.3 1.4 15 
P 

Figure 1. Maxima! sqneezing for tlw M- and P-coherent states. 

The calculated results, presented in figure 1, show that for P-bosons (symmetric under 
q CI l / q )  the attained squeezing is always 'less than in the conventional case; this is a 
feature of these q-boson systems [IO]. This is also true for the M-boson case when q I 1, 
the region of unrestricted convergence of the infinite series involved. 
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